2x^2+4x+4=18^2

Simple and best practice solution for 2x^2+4x+4=18^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+4x+4=18^2 equation:



2x^2+4x+4=18^2
We move all terms to the left:
2x^2+4x+4-(18^2)=0
We add all the numbers together, and all the variables
2x^2+4x-320=0
a = 2; b = 4; c = -320;
Δ = b2-4ac
Δ = 42-4·2·(-320)
Δ = 2576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2576}=\sqrt{16*161}=\sqrt{16}*\sqrt{161}=4\sqrt{161}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{161}}{2*2}=\frac{-4-4\sqrt{161}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{161}}{2*2}=\frac{-4+4\sqrt{161}}{4} $

See similar equations:

| 0.1(x)=0.5 | | 27+x=1 | | u/5-9=11 | | 9(x+30)=15x | | -24=5x-14 | | -5/3=(-7/5u)+(5/4) | | 9(x+15)=15x | | 3/5+u=1/3 | | 2m+5=14 | | 19=x=25 | | 4x+16+29=8x | | X+12+x+12-18-x+19=x+31 | | .2x+7=16 | | g(4)=16-2(4) | | -3/5+u=1/3 | | x(25x^2-81)=0 | | 2.x+20=65 | | 15=9-3a | | 3(2x+1)(4x+1)=0 | | u/5-6=-21 | | 18-x+12+x+19-x+12=x+31 | | 5x=x+3+57 | | 8x+-1=-x-1 | | G(x)=3^x-7 | | -6a+3=-3(2a+3) | | 2y+5=5(26)-17 | | -7w+5(w-3)=-29 | | G(x)=3x-7 | | -22-5a=6(5a+4) | | 5+10x=3x-12 | | x2=8x+20 | | 2/3*x+4=10 |

Equations solver categories